US 2004/0049598 Al

left in the page for more advanced handheld devices capable
of receiving and displaying the images.

[0050] For the edit server, a web manager who does not
want a certain web page or a web site to be compressed
simply uses a standard meta tag specification to inform the
server not to process selected pages from the web site or
even the entire content from that web site.

[0051] FIG. 8 illustrates an exemplary method in flow-
chart form for the HTML edit server of a preferred embodi-
ment of the present invention. The editing process is per-
formed in conjunction with the Compressor 418, 618 and the
Control Server 642 or the Redirector 416. The process flows
from a “wait state”802 to processing once a request is
received. When a request is received, the HTML Editor
checks the submitted page’s HTML code for tags, 804 which
designate objects, such as GIF, JPEG and PNG, that can be
compressed and replaced with compressed content tags. If
the tag is found to be an image tag at 806 then the
Compressor is notified that an image needs compression
820. If the compression was unsuccessful the tag is skipped
824 and the Editor resumes the process of finding and
examining new tags for compression 804. If the compres-
sion was successful the image tag is edited 830, the end of
the file is reached 836, statistics are written 838, the file is
saved 840, the logs are updated 842 and the Editor goes back
into the wait state 802.

[0052] If the tag is found to be an Anchor Tag or a
Thumbnail 808 then the editor notifies the Compressor that
an image needs compression 810. If the compression is
unsuccessful the tag is skipped 814 and the editor resumes
the process of finding and examining new tags for compres-
sion 804. If the compression was successful the Anchor tag
is edited, the end of the file is reached 836, statistics are
written 838, the file is saved 840, the logs are updated 842
and the Editor goes back into the wait state 802.

[0053] On the other hand if the tag is a HREF that points
to an image 816, the image is downloaded 818 and the
Compressor is notified that an image needs compression
820. If the compression was unsuccessful the tag is skipped
824 and the Editor resumes the process of finding wand
examining new tags for compression 804. If the compres-
sion of the image tag was successful, the end of the file is
reached, statistics are written 838, the file is saved 840, the
logs are updated 842 and the Editor goes back into the wait
state 802.

[0054] At step 828, the Editor checks for an image map. If
an image map is found then the Editor gets the image map
data 832. If the compression is successful the Image Map is
edited 830, the end of the file is reached 836, statistics are
written 838, the file is saved 840, the logs are updated 842
and the Editor goes back into the wait state 802. If an image
map is not found the image tag, if any, is edited 830 the end
of the file is reached 836, statistics are written 838, the file
is saved 840, the logs are updated 842 and the Editor goes
back into the wait state 802.

[0055] FIG. 9 illustrates an exemplary method in flow-
chart form for the compression server according to an
embodiment of the invention. Compression is preformed by
the Compressor 418, 618 and the HTML editor. Initially the
Compressor is in a wait state until it gets a request from the
HTML Editor 901. Upon receiving a request to compress an

Mar. 11, 2004

image, the Compressor first determines the media type 902
of the material to be compressed (JPEG and GIF files are
examples of media types that can be compressed). The
decision block next determines whether or not the media
type must first be decompressed 903. Certain types of media
such as JPEG and GIF must be decompressed before the
Compressor can compress them. If there are images that
need to be decompressed then decompression parameters are
set 904 and the image is decompressed 905. In the case of
JPEG and GIF the decompressed image becomes a BMP
(bitmap). The Compressor checks to see if the decompres-
sion was successful 906. If the decompression was success-
ful then the Compressor sets the compression parameters
907 and compresses the object 908. A return code is gen-
erated 909 and the compression is checked to see if such
compression was more than predetermined threshold (e.g.,
10%) 910. If the compression was more than the threshold,
a reply message is sent to the Editor stating that the
compression was successful 913. The logs are then updated
914, ending compression for this object. If the compression
was less then threshold the quality is checked and a deter-
mination is made as to whether or not the quality is greater
than another predetermined threshold (e.g.,>20) 911. If the
quality is >20 it is lowered by a predetermined amount (e.g.,
5), 912 and the object is recompressed 908. If the quality is
less than the threshold (<20), a reply message is sent to the
Editor that the compression is complete. The logs are
updated 914, thus ending the compression for this object. In
the instance that the decompression is not successful 906, a
reply message is sent to the Editor stating that the decom-
pression was unsuccessful 913. The logs are updated 914,
thereby ending compression for this object. FIG. 10 illus-
trates a flowchart of n-Depth Compression 1000 according
to an embodiment of the invention. The n-Depth Compres-
sor, working in concert with the Control Server 632 and the
HTML Editor 423, parses out links from requested URLs
and sends the resulting pages to the HTML Editor. The depth
of such parsing is configurable at startup. The following
description of FIG. 10 illustrates the n-Depth Compression
processes. The n-depth Compressor begins in a wait state
1001 until it receives a request from the Control Server or
Redirector to examine a URL for links. Upon receiving a
request to examine a URL, the n-Depth Compressor locates
the first link on the page 1002 and a decision block 1003
determines if the link points to a page coded with HTML.
The HTML encoded page is downloaded 1004. The depths
of the associated links are calculated and the depth object is
updated 1005. The HTML is then parsed 1006 and all
images are downloaded =using a separate thread 1006 and
the Editor and Cache Manage are notified 1007. Next, the
Editor is notified that it needs to edit the page and then
checks with the cache manager to see if it already has the
page. A decision block 1008 determines whether are not the
end of the page has been reached. If the end of the page has
been reached, depth is recalculated and the depth object
(data structure that tells the n-Depth Compressor how deep
it is) is updated 1009. If the end of the page has not been
reached the routine begins again 1002 with the next link.
After reaching the end of the page 1008 and recalculating
depth and updating the depth object 1009, a decision block
1010 determines whether or not n-Depth has been reached.
If n-Depth has been reached the log files 1011 are updated
and the n-Depth Compressor returns to wait 1001. In the



